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Abstract

Recent acquisition systems, such as the one developed at the Video and Image
Processing Lab at Berkeley, are capable of collecting large, detailed, highly textured
models that standard levels of detail (LOD) rendering techniques [18] cannot handle

efficiently.

We propose an out-of-core rendering engine which applies the cost and benefit ap-
proach of the Adaptive Display algorithm by Funkhouser and Séquin [18] to Hierarchical
Levels of Detail (HLODs). Unlike the Adaptive Display algorithm, we do not skip objects

to maintain interactivity when many objects are visible.

Funkhouser and Séquin apply hysteresis by adding a penalty in the benefit heuristics
to discourage disturbing visual effects due to fast switching of detail in the model.
However, this penalty may not be sufficient if the user is moving around rapidly in
the scene. Instead, we have developed a more robust temporal hysteresis by retaining

how much detail is rendered over a time period.

We have implemented our rendering engine to run on a common personal computer
with a standard graphics card. The engine is capable of visualizing, in both walk-
through and fly-through mode, a detailed model of 25 city blocks comprised of 8.9 million
triangles and 937 million color pixels. Our engine maintains a constant frame rate while

limiting excessive flickering.
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Chapter 1

Introduction

1.1 Motivation

Interactive visualization of 3D scenes is used in different contexts such as architec-
tural evaluation of buildings, CAD applications, game playing and simulations. These
visualizations require some models to be constructed manually, generated procedurally,
or acquired from a physical model in the first place.

Models created manually tend to be inherently simple. Objects, such as buildings,
are usually modeled with perfect primitives, and are often axis-aligned. Also, texture is
usually tiled and the same texture is used for many objects.

Procedural generation, for instance, may use an extended L-system as well as user-
specified parameters, such as density maps and building height maps, to create an
entire city [28]. However, such systems only have a finite number of building classes.
Each building class generally uses simple extrusions to create building modules.

Most acquisitions, in the past, have yielded simple models. For example, Jepson and
his team at UCLA created models by using aerial images to identify features such as
street widths and building foot prints [23]. They represented objects such as buildings,
as simple rectilinear extrusions to the building height. Photographs were applied as
texture to these highly simplified geometric shapes to generate the final models.

To summarize:

e Manually constructed or procedurally generated models consist of simple primitives
and small textures that are tiled.
e Traditionally acquired models have been limited in complexity or size because:
— the acquisition process is only semi-automated and requires manual interven-
tion, which slows or hinders acquisition,
- the acquisition takes place in a stop-and-go fashion and needs considerable
setup time, and
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Figure 1.1: (a) The ground acquisition setup (b) Acquisition of aerial data

- the acquisition was not proven to scale up to larger models.

Consequently, rendering and interactive viewing of such limited models has been
possible on today’s powerful hardware without much difficulty.

Recent acquisition methods, however, require little human intervention and are
capable of collecting large and detailed models. One example of this is an acquisition
system developed at the Video and Image Processing Lab at Berkeley which is capable
of rapidly acquiring large, detailed, highly textured models of urban environments from
the ground level by using two 2D laser scanners and digital cameras [13, 14].

The ground acquisition system is mounted on a truck being driven on public roads
as demonstrated in Fig. 1.1 (a). During motion, the vertical scanner captures the shape
of the building facades, whereas the horizontal scanner is used for position estimation
by matching successive horizontal scans. The spacing between vertical scans depends
on the speed of the truck and traffic conditions and is typically about 10 cm. Data is
acquired continuously, rather than in a stop-and-go fashion. Finally, the data is post-
processed automatically without any manual intervention to produce triangular meshes
with large texture maps [12].

As an example, a 20-minute acquisition, followed by automatic post-processing,
yields a complex city model consisting of 25 complete blocks of building facades,
where none of the buildings share the geometry or the texture with any other building.
Specifically:

¢ Buildings that are “boxy” are represented by tens of thousands of triangles instead
of a single cube
e Buildings that are of uniform color still carry the same amount of texture as a



Figure 1.2: (a) The highest level of detail texture map of a block in Berkeley with one in every ten triangles
overlaid in blue on top of the texture. Note that the texture is not tiled and the triangles are not simplified
or collapsed to form larger ones. (b) A closeup view of the texture map.

building with non-repetitive texture, since none of the texture is tiled
This can be seen in Figs. 1.2 (a) and (b).

Far-range Digital Surface Map (DSM) data and aerial imagery, acquired as shown in
Fig. 1.1 (b), are then registered with respect to the ground-based model and merged
to create a single model [15]. This final city model has about 8,950,000 triangles.
The texture consists of over 937,000,000 pixels in full color or about 2680 MB of
uncompressed data. An overview of the entire model can be seen in Fig. 1.3 (a). A
closeup in Fig. 1.3 (b) shows the detail in the model.

Although most rendering algorithms are theoretically capable of using arbitrary data,
the complexity and quantity of data that can be viewed interactively is extremely limited.
Rendering a large model, such as this data set, poses new and interesting challenges
that have not been addressed by previous work. The primary goal of this work is to
address the real-time interactive rendering of such large models.

1.2 Goals

Hardware

Our goal is for our rendering system to run on a common personal computer with a
standard graphics card and average amount of system memory.
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Figure 1.3: (a) The entire city model, as seen through our rendering system, has about 25 blocks. The grey
regions are triangles that do not have corresponding texture; (b) Closeup of one of the blocks in the city
model.



Model

The rendering system should be independent of the size of the model. The model may
not necessarily fit in system memory and dynamic loading and unloading of meshes
must be performed to do out-of-core rendering.

One could reduce the size of the model to enable interactive rendering. For example,
one could throw away a lot of triangles that approximately lie on the same plane.
Similarly, one could remove repetitive texture and replace it with a titled texture.
However, small changes in geometry and texture are still perceptible if seen from a
certain view-point and at a certain distance. That is, rather than throwing away data,
our goal is to manage the full details in the model to and solve the associated interactive
rendering issues.

Performance

This rendering system should:

e maintain a specified frame rate to ensure an interactive experience for the user,

e utilize as much of the render time as possible by adding detail where it is most
observable by the user,

e not skip rendering of objects that can be seen by the user, and

e preserve some coherency between frames and minimize switching between discrete
levels of detail.

Interface

The rendering interface should:

e allow the user to stand still or move at arbitrary velocities,

e permit use of all 6 degrees of freedom so that the user may move about in an
unrestricted manner,

e let the user go anywhere and not be confined to a pre-defined path.

1.3 Organization

The thesis is organized as follows. Chapter 2 reviews previous work in interactive
visualization of large scenes. We also explain why these approaches were not suitable
to meet our goals. In Chapter 3, we describe how we create the HLODs and show the
pre-processing step. Chapter 4 elaborates on our rendering engine. We compare our
approach in Chapter 5 to the Adaptive Display Algorithm and present overall results in
Chapter 6.



Chapter 2

Previous Work

Significant progress has been made in the past few decades to allow ever more
complex geometry and larger models to be viewed interactively.

2.1 Representation of Data

Polygon Representation

Polygon representations are most popular and their rendering is well optimized for
most, if not all, graphic hardware architectures. Levels of detail (LODs), introduced by
Clark in 1974, consist of a hierarchy of objects at ever simpler representations [4]. He
used the appropriate representations to improve interactivity.

Rendering LODs of large objects, however, are less optimal. For example, consider
a slanted view of a building facade in Fig. 2.1 (a). Note that a coarse representation of
the object is ideal for the portion of the object that is far away from the camera but is
too coarse near the camera. Similarly, a highly detailed LOD provides good detail near
the camera but wastes too many triangles for detail that is not perceptible from that
position.

One possibility to overcome this is to break large objects into smaller pieces. However,
smaller pieces restrict simplification locally to that piece and yield substantially sub-
optimal LODs at the coarsest levels. The use of a hierarchy of LODs, or HLODs, was
proposed to overcome suboptimal use of LODs [10].

Progressive meshes are a flexible representation of polygon geometry that can be
adaptively tailored to produce different LODs [21]. Such a mesh is simplified iteratively
by collapsing some selected edges. If the edges to be collapsed are chosen carefully,
annoying visual “popping” can be minimized.
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Figure 2.1: (a) LOD of large object is too coarse near the camera; (b) Using a higher detailed representation
wastes detail that is far away from the camera.

Geometry that is stored as triangle strips provides a compact representation that
saves memory, reduces bandwidth requirements, and takes less time to render [11].
This technique was improved to generate triangle strips for LOD meshes [2] and in real-
time [32]. Nonetheless, such techniques do not make render time output-dependent and
rendering of large models require some management to ensure interactiveness.

However, progressive meshes are not able to fully utilize the graphics hardware
accelerations since the geometry changes frequently as the user moves around. In
addition, texture mapping of progressive meshes is quite cumbersome [30].

Point-based Representation

Point-based rendering is another technique that scales well with complexity [24].
Rusinkiewicz and Levoy describe QSplat as a system that uses spheres of varying sizes
to form the model. Detail is added by replacing larger spheres with smaller ones [29].

Unfortunately, the large flat surfaces and creases usually found in buildings typically
require a very large number of points to maintain fidelity. Consequently, less detailed
point-based representations would either have holes or be grossly inaccurate. Therefore,
less detailed triangular representations are better suited than less detailed point-based
representations.

Consequently, hybrid approaches were developed that use both polygons and points
as rendering primitives [3, 5]. However, these algorithms have exploited only minimally
the acceleration available from graphics hardware.

Dachsbacher et al. proposed a way to convert a hierarchy of points and polygons into
a linear list that could then be rendered quickly by graphics hardware with minimal
CPU load [7]. The trade-off with this approach is that hierarchical culling cannot be
performed since parent-child relationship is lost in a sequential list.



Other Representations

Height fields are often used for terrain visualization [9, 25,27, 33]. However, our city
model has detailed building facades as well as aerial data. Thus, our model cannot easily
be represented as height fields and these strategies are not applicable to our problem.

Maciel and Shirley introduced the use of image-based “impostors” to replace the
underlying 3D geometry [26] and their idea was refined by others [8,31]. Such an
approach works well for highly detailed polygonal models with little or no texture since
it trades off geometric complexity with texture management. However, this trade-off is
less desirable for models, such as ours, with large texture maps.

2.2 Culling

Visibility culling rejects objects that are invisible and are guaranteed not to contribute
any pixels to the screen. Three different culling techniques are in use. The first one is
frustum culling, which is very effective and adds minimal overhead [1]. Back-face culling
eliminates surface geometry that faces away from the viewer [22] and is used readily in
scenes consisting of solid objects. Both of these culling methods are classical in the
graphics community and various hierarchical and optimized algorithms exist.

Occlusion culling, on the other hand, requires significant processing. Recent
variations and approximate algorithms, described in a recent survey paper [6], have
improved the overhead to some extent. However, in many cases, like fly-throughs, the
payoff for occlusion culling is very limited.

To summarize, culling can help reduce complexity of a large dataset. However, it
is not effective enough to make the render-time output-dependent instead of input-
dependent. Therefore, other techniques have to be used in tandem with culling
algorithms.

2.3 Data Management

Memory management

Memory management ensures that memory usage does not exceed available capacity,
and tries to prevent forced, in-opportune swapping of data by the operating system
between physical memory and the hard disk.

Funkhouser prevents swapping by asynchronously prefetching data as needed [17].
However, the prefetching algorithm cannot always guarantee availability of objects in
memory and objects may still pop into view after they are loaded.
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Varadhan and Manocha implement an out-of-core rendering engine using two
processes: one that renders the scene, and one that prefetches HLODs [34]. However,
if the prefetching heuristics are miscalculated or the user moves unpredictably, the
rendering engine may stall while that HLOD is loaded. That is, the render time is
dependent on the loading time of an object.

Detail management

The details of the model must be managed to prevent overload of the graphics pipeline
and to ensure interactivity. Specifically, rendering too much 3D geometry will increase
render time because it is approximately proportional to the polygon count. Rendering
may also stall if the texture is too large to fit in graphics memory.

Funkhouser and Séquin were the first to realize that levels of detail can be used not
only to reduce the complexity of the scene but also to limit it. They call their approach
the Adaptive Display algorithm, where they use a heuristic to determine the ratio of cost
and benefit of each object at each of its LODs. Furthermore, they equate the graphics
pipeline load management problem to the multiple choice knapsack problem and offer
an approximate solution that is at least half as good as the optimal [18].

However, Funkhouser and Séquin employ a simple 2-level hierarchy and have a one-
to-one correspondence between all the LODs of an object [18]. Large data sets, such
as ours, require the model to be broken up into smaller pieces at different LODs to
prevent wasted detail, and to coalesce smaller pieces to enable higher simplification.
The Adaptive Display Algorithm cannot generalize to such a hierarchy of LODs.

Maciel and Shirley use a hierarchy of LODs and imposters. They traverse the
hierarchy in a bottom-up fashion in the first pass. In the second pass, they refine
their selection [26]. Since they visit all the nodes of the hierarchy, the complexity of their
algorithm is O(NN). This limits scalability.

Erikson et al. traverse the hierarchy top-down and use a screen-space error metric to
choose which HLODs are refined [10]. However, the refinement process does not directly
consider the cost of each refinement and can result in significantly non-optimal use of
render times. The polygon budget is simply based on previous frame render times, which
can lead to frequent switching of HLODs between successive frames.

2.4 Other Approaches

Wand et al. suggest a novel rendering algorithm that is output sensitive [35]. They
use a randomized Z-buffering algorithm that chooses dynamically from a set of random
surface sample points to render the scene. Their data set uses the same geometry
repeated numerous times to demonstrate their approach with a high triangle count.
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Chapter 3

Model Preparation

3.1 Overview

We choose to use hierarchical levels of detail or HLODs to represent our model since
they are more efficient than LODs. Also, static HLOD nodes better utilize graphics
hardware acceleration and optimization techniques such as display lists. HLODs also
allow hierarchical culling, substantially reducing CPU and GPU load.

Since all the parts in our model are large, we create HLODs by segmenting our
acquired data instead of merging adjacent parts. Each part of the model is segmented
into pieces that are further broken up into smaller pieces as more detail is added. This
yields a hierarchy! shown in Fig. 3.1.

hlod, - ,

hlod, hlod, > hlod,

hlod, —»{ hlod, % hlod, hlod, —»{ hlod, %» hlod,

Figure 3.1: HLODs for a single block. The node hlody is most coarse whereas hlod: is the most detailed.
Note that hlody’s siblings are other blocks.

hlod, ——»{ hlod, —— hlod,

The last pre-processing step is to generate a scene description file that stores the
HLOD hierarchy and caches computations that are used during rendering. Both of
these steps are elaborated below.

'The subscript refers to the amount of detail in our HLODs.

12
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Figure 3.2: (a) A set of triangles before split; (b) Cutting plane is used to create two sets of triangles that are
shown separated for clarity. New vertices are created on the plane; (c) The split triangles are re-triangulated.

3.2 HLOD Generation

Our city model is acquired? in a continuous fashion that is then split up into blocks.
These blocks typically corresponds to one side of a city block.

Before we generate the HLODs, we define a constant that determines the desired
number of triangles for all HLODs. We denote this constant as cgesireqrrisc. We also
define a ratio of number of triangles and size of texture between two successive levels of
the hierarchy, cjepeiructor- These two constants are used for all the blocks.

For each block, b, we generate the least detailed HLOD, hlody, by simplifying it
using Qslim Simplication Software [20] with a metric such that the number of triangles
decrease by a factor defined below:

‘ o numTIriangles,
simplificationpiody =

CdesiredTris

Here, numTriangles, is the number of triangles in the block that is being processed. The
original texture data is down-sampled by this simplification factor as well.

To create the next level in our hierarchy, hlod,;,;, we simplify the original block’s
triangle mesh and down-sample texture by a simplification factor computed from the
previous factor:

simplificationpioq,

simplificationpiod,,, =
Clevel Factor

We also create cjepeirmuctor — 1 cutting planes perpendicular to the longest dimension of the
block that run from one end of the bounding box to the other end.

We apply each cutting plane to a block in order to separate triangles into two sets,

2For details on the acquisition process, refer to papers by Frueh and Zakhor [12-14].
3The list of all constants and their values are listed in Table 6.1
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depending on which side of the plane the vertices fall. Vertices that form triangles
across the cutting plane are split into 3 smaller triangles by introducing two vertices
at the intersection of the two edges and the cutting plane. This technique, illustrated in
Fig. 3.2, minimizes cracks that appear when HLODs at different levels are next to each
other.

This division step yields ¢jepeiructor Pi€CES, Where each piece corresponds to a node in
the HLOD hierarchy. The division and simplification process is recursively repeated on
each piece with a smaller simplification factor until the factor becomes less than 1.

The end result is a hierarchy where the top most node is most simplified and
represents the entire block. The next level has cje,e1ructor Pi€Ces that collectively represent
the parent. That is, each node in this level has more detail but represents an increasingly
smaller portion of the entire block. This relationship holds all the way to the leaf nodes
that are most detailed but contain the smallest piece of the block.

We repeat this procedure for all the blocks. One such block is shown in Fig. 3.1
where ¢cpeiructor 18 3. Our final data has a total of 114 hlody nodes from 114 blocks. The
total number of nodes in the hierarchy is 2296 and the maximum depth is 5.

Note that on average each node would have cg.q;reqrris triangles. However, the actual
number of triangles vary considerably due to the varying density of samples and varying
effect of simplification along different sections of the block.

3.3 Other Pre-processing

After the hierarchy is created, the triangle geometry of each node is stored in a binary
format on disk to facilitate fast loading. The textures are saved in compressed JPEG
format for the same reason.

Lastly, the following hierarchy attributes for each node are saved on disk in a binary
scene description file:

e first child,

e next sibling?,

e unique ID,

e path to triangle geometry file,
e path to texture image file,

e bounding box,

e cost,

e static benefit, and

e average normal

‘Instead of each parent linking to all the children, we create a linked list of siblings to allow arbitrary
number of children.

14



The child and sibling information defines the parent-child relationship between all
the nodes. The unique ID is used as a key for a hash table to quickly find a node in
Section 4.3. Since each node’s geometry and image are stored in a separate file for
loading to be independent of other nodes, we must save the path to both files.

The last four attributes are pre-computed to prevent computing them each time the
rendering engine loads a node or reloading them separately from disk. The bounding box
is useful for culling in Section 4.2. The cost of a node, n, is approximately proportional
to the time needed to render the node. It is the weighted sum of the number of textured
and untextured triangles:

cost, = mnumTexturedlriangles, X Cieptured + (3.1)
numUnTexturedTriangles, X (1 — Cteztured) '

The constant weight, ce,tured, is calculated empirically by comparing the render time of
a set of triangles both with texture and with flat shading.

The benefit of a node, n, is complex to measure and involves semantic and contextual
information [18]. We compute a static approximation of the benefit in the preprocessing
step as the geometric mean of the accuracy of its representation and its total surface
area. Specifically, given that triangles(n) is the set of triangles in n and area; is the area
of triangle, ¢, we have:

staticBenefit, = \/numTrianglesn X Y tetriangles(n) A€M

That is, the static benefit of node, n, is calculated when n is 1 unit® away from the
camera with no foreshortening®. This measurement is dynamically adjusted during the
rendering phase as discussed in Section 4.2.

Since most of our nodes are facades of buildings, the orientation of most of the
triangles is fairly uniform. Therefore, the average normal of a node serves as a good
approximation to adjust for foreshortening during the rendering phase. The normal of
n, avgNormal,, is calculated by taking the average normal of each triangle, weighted by
its area that is then normalized:

L
normals X areat )

Ztetriangles(n) (

—
” Ztetriangles(n) (normalt Xareat)”

—_———
avgNormal, =

Here, normal; is the normalized normal of triangle, t.

One unit is 1 meter or 39.37 inches for our implementation.
SForeshortening is when an object appears smaller because of a slanted viewpoint.

15



Chapter 4

Rendering Algorithm

4.1 Overview

The overview of our rendering algorithm is shown in Fig. 4.1. Our implementation

consists of two threads:

e the rendering thread, and
e the loading thread

Loading high
HLO.DS 0N |+ 0ad HLOD Thread “pr%tlifyryHngDs
disk
Priority
| Queue

Update
HLOD status
. t
Rendering Update
HLOD Thread HLOD priorities

Hierarchy Téiggsse

|
Render

liHLODs

Graphics Pipeline }

Figure 4.1: Overview of the rendering engine architecture.

The rendering thread traverses the HLOD hierarchy to render each frame within
an allotted time by selecting nodes that are then sent to the graphics pipeline. After
rendering each frame, the keyboard and mouse are queried for user input. With each
traversal, the rendering thread computes and updates the priority of each node in a
priority queue. The priority reflects how important the node is in the current state of the

SCEne.
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The loading thread, the other component of our implementation, queries this priority
queue and asynchronously pre-fetches from the disk those nodes with the highest
priority and unloads the nodes deemed least important from memory. Since the HLOD
hierarchy is not completely resident in memory, each load and unload is reflected into
the hierarchy by updating a status flag. The rendering thread uses this flag to determine
availability in memory.

4.2 Rendering Thread

The primary contribution of this thesis is the node selection process. Node selection,
as illustrated in Fig. 4.2, is dependent on the cost and benefit of a node, which determine
its priority. The time slice is assigned by splitting the available render time among the
node and its siblings based on the ratio of their priorities and their cumulative priority.
This time slice is then recursively divided among each node’s children.

cost, timeNeeded, 1
priority, 1 hyst, 1
L™

A

benefit, timeSlice,

cumHyst,
priority, L™ hyst

Figure 4.2: Dependency graph of each of the attributes of a node, n on other attributes of n and siblings
m, ..., etc. The cum Hyst attribute determines which nodes are selected and sent to the graphics card by the
rendering thread.

Subsequently, the estimated time needed to render a node is compared with the time
slice allocated to the node. This comparison is used to update a hysteresis counter for
each node to limit excessive switching of HLODs. Finally, a cumulative hysteresis value
is calculated for a set of siblings which determines if all the visible siblings should be
rendered or not. These are all discussed in more detail below.

Initialization

Before rendering can begin, the rendering thread initializes by first loading the scene
description file. This file provides scene data, such as a node’s bounding box, and is
kept in memory at all times to avoid recomputing it during run-time or reloading it from
disk.

Next, we load all hlody nodes into main memory. This ensures that a user traveling in

17



an unpredictable fashion would at least see a simplified version of any node. Otherwise,
such a node would not have been loaded, and the user would:

¢ lose interactivity while waiting for the node to get loaded, or
e see an empty space instead of the node!.

We assume that all hlody nodes take a small fraction of memory and, thus, not only
can they all be kept in memory at all times, but that they also leave a large portion
of memory unused for higher levels of detail. This storage penalty can be reduced by
increasing the simplification factor between levels, cjcpeiractor, OF by increasing the depth
of the hierarchy by decreasing cgesiredrris-

After the rendering thread has finished initialization, the loading thread is started at
a low operating system priority.

Node Hierarchy Traversal

After initialization, the rendering thread recursively traverses nodes in the hierarchy
in a top-down, breadth-first manner to render each frame. On traversal, each node’s
priority is calculated and maintained in a priority queue.

Since we need not visit all the nodes in the hierarchy, the running time is dependent
on the target render time for one frame and the number of objects in the scene. Breadth-
first traversal ensures that all siblings are queried before their children. If a node is
visible and not loaded in memory, none of its siblings can be rendered either and the
parent node must be rendered instead?. For this reason, it is preferable that each node
not have too many children.

Priority Heuristics

Upon visiting each node, n, the rendering thread calculates its priority based on a
benefit and cost ratio as done by Funkhouser and Séquin [18]:

benefit,
costy,

priority, =

Note that a higher priority indicates higher importance.

Recall that staticBenefit, is calculated offline for each node in Section 3.3. This benefit
is measured as the approximate, unforeshortened screenspace of a node that is 1 unit
away. We compute the benefit from the static benefit, by adjusting for distance, visibility

'Once the node finishes loading, it would then suddenly pop into view.
2Note that hlodo nodes are always kept loaded in memory.
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and foreshortening:

) staticBenefit, X vis, X foreshorten,
benefit,, =

distance,?

The distance is measured from n to the camera and is slightly adjusted based on the
user’s velocity to exploit temporal coherence.

We compute visibility, vis,, by frustum culling. We do not perform occlusion culling
because of its high overhead but it would be easy to incorporate it into our heuristics:

visy, = 14 (cyis X frustumVisy,)

Here, frustumVis, is 1 if n is in the view frustum. Otherwise, it linearly decreases to
O based on how far outside of the view frustum n is. The constant, ¢,;s, weighs the
importance of visibility.

Lastly, we adjust for foreshortening by multiplying with the dot product of the normal
of the image plane, view, and the average normal of n, avgNormal,. This is weighted by a
constant, cyope:

foreshorten,, = 14 (view - avgNormal, X Cfore)

The cost of n, cost,, is also calculated offline as shown in Equation 3.1. To summarize,
the final priority for node n is:
staticBenefit, X (1 + (cyis X frustumVis,))

priority, = - 5 X foreshorten,,
costy, x distance,,

Time Slicing

We calculate timeSlice,, or the amount of time that has been allocated to render n,
in a top-down approach based on the overall time target, and n’s relative priority with
respect to the total priority of its siblings:

priorityy,
ZiESiblings(n) priority;

timeSlice, = shareTlime, X 4.1)

Here, siblings(n) is defined to be the set of all visible nodes that have the same parent as
n. Thus, n is a member of this set if n is visible.

Also, shareTime,, is the total time a node and all its siblings share. This is assigned
a constant value, cirgerTime. for all n at level 0. Each node, n at hlody, recursively
passes along its time slice, timeSlice,, to its children to be shared among them based on
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Equation 4.1. Thus, shareT'ime, is defined as:

timeSlice if parent(n) exists
sharelime, = parent(n) p ( )
CtargetTime otherwise

Note that parent(n) is the parent of n.

Next, we estimate the time required to render n, which is proportional to n’s cost:
timeNeeded,, = Ugime X COSty,

Note that vy, is a variable that is adjusted in a feedback loop based on comparing
actual time used to render a frame with the estimated render time needed for all the
nodes rendered plus a fixed overhead®. The need for this feedback loop is due to the
fact that most graphics hardware performance is based on factors besides number of
triangles, such as the fill rate.

One possible implementation of the rendering algorithm is to keep recursing as long
as:

shareTime, > Z timeNeeded,
i€siblings(n)

When the above condition does not hold for a set of siblings, their parent is selected
to be rendered instead. This approach guarantees that the time slice of the parent is
never exceeded by the children. Consequently, the total estimated render time will never

exceed CtargetTime -

In practice, however, the feedback loop introduces excessive switching of the HLODs
as vyme oscillates up and down. Therefore, we must extend the above approach to
incorporate hysteresis.

Hysteresis

The Adaptive Display algorithm incorporates a hysteresis component as part of the
benefit heuristics [18]. However, this approach can still cause switching of LODs as
objects become visible or invisible [16]. Furthermore, we would like the loading to be
independent of hysteresis.

Maciel and Shirley implement a counter that is incremented every time the algorithm
wishes to switch from parent to children. The switching is allowed only if the counter
exceeds a pre-fixed threshold [26]. However, this implementation is inflexible and does
not account for nodes that need to be switched more urgently than others. Consequently,
their frame rate exhibits dramatic variation.

3The fixed overhead cost is measured by disabling actual rendering.
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We choose, instead, to increment or decrement the counter based on an urgency
factor. Let us denote the counter by hyst, for node n. With each traversal of n, we update
the counter:

timeSlice, — timeNeeded,,
timeNeeded,,

hysteresis,, «— hysteresis, +

We add a constraint to the above and restrict hysteresis, to lie in the range of

—ChystLimit and ChystLimit» where ChystLimit is a constant.

hysteresis, { ChystLimit ~ if hyster 632:871 > ChystLimit
—ChystLimit i hysteresis, < —ChystLimit

That is, if the time slice of n is larger compared to the time needed to render n, then
the hysteresis counter will approach positive cjyqrimi Over time. If both are almost the
same, hysteresis, will remain near a O value. Otherwise, it will go towards negative
ChystLimit-

The approximate hysteresis counter value of O indicates that selecting that node to
render will approximately use the render time allotted to the node. However, a node
cannot be rendered without rendering its siblings. Therefore, we need a cumulative
hysteresis value for all the siblings. Our approach is:

hyst j
cumHyst, = Z trunc (M)
(n)

c .
i€siblings(n hystSwitch

Here, trunc() truncates the floating point value to an integer by discarding the decimal
value. This eliminates the least significant bits responsible for oscillations.

The constant, cpysiswiten. determines the threshold for switching and should be
between 1 and cpysirimic- A higher value implies longer delay to switch HLODs but with
a looser guarantee on how close the render time will be to cigrgetTime. Conversely, a
lower value implies that render times will be closer to ciqrgetTime at the expense of more
switching of HLODs.

Our rendering algorithm recurses breadth-first and updates the cumulative hystere-
sis value until we reach the last sibling. If:

cumHyst, < 0

we render the parent of the siblings. Otherwise, we recursively visit the children of all
the sibling nodes, again, in a breadth-first order.

Unlike Maciel and Shirley, we do not use the hysteresis counter to override switching
of nodes [26]. Instead, our counter is sensitive to the urgency of a node needing to be
switched. Consequently, we rely on the hysteresis counter alone to select the front.
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Feedback Loop

Our approach can select nodes that are not loaded in memory. This leads to sub-
optimal use of render time. Since availability of nodes in memory has high temporal
coherence, we add a second feedback loop that gradually increases sharelime for
hlody nodes if some nodes were not selected because their cumulative hysteresis value
was below O and the actual total render time used was substantially below ci4getTime-
Similarly, if the total render time substantially exceeds ciargetTime, We decrease sharel'ime
for hlody nodes.

The feedback loop ensures that if there are nodes that can utilize the render time, they
will have a chance to do so. Also, as nodes get loaded in memory, the actual render time
will get larger. Consequently, the feedback loop will gradually cut back on the available
render time to ensure consistent frame rate. This describes the final implementation of
our rendering thread.

4.3 Loading Thread

Incremental Pre-fetching

The rendering thread starts rendering with only hlody nodes in memory. The
rendering thread relies on the loading thread to asynchronously query the priority queue
and load high priority nodes that have not been loaded.

The loading is done incrementally by reading only a small portion of a node at a time.
The priority queue is checked between each incremental load, and the previous loading
is suspended and loading of a new node is started if the priority changes. This feature
makes our loading more responsive to erratic movements by the user.

To limit memory usage and avoid swapping, we assume that memory usage for a
node is proportional to its cost. Thus, memory usage is bounded by the set of nodes in
memory, mem:

maxMemory > Cmemory X Z cost;

iEmem

The loading thread prevents memory usage from substantially exceeding a fixed size,
maxMemory, by unloading the nodes in the set mem with the smallest priority until the
above condition is satisfied. The constant, cemory, is established experimentally* and
maxMemory is based on the system resources.

“We cannot calculate storage requirements for display lists and find the constant experimentally.
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Priority Queue Implementation

The loading thread uses a priority queue to maintain the list of nodes that are loaded
and nodes that need to be loaded. Priority queues are traditionally implemented as
heaps because they guarantee O(log(N)) insertions and deletions and O(1) to query the
highest priority node.

We chose to implement a different data structure: a doubly-linked list sorted in
decreasing order of priority with a hash table to lookup any node in the list. This data
structure works well for our needs because there is a high degree of temporal coherency
between the updates that we make to the list of nodes.

For example, note that most new insertions of nodes would go at the end of the list
because the priority of a node is very unlikely to become high too quickly to displace the
most important nodes at the head of the list. Similarly, deletions of nodes will happen
at the end of the list. In the worst case, we may need O(N) to add or delete a node.
However, for the average case, our insertions and deletions would require O(1).

Priority updates for nodes in the list will also move the node a few places up or down
the list between two successive frames. We can find a node in the list in O(1) time by
using the unique ID as the key in our hash table. So, the overall priority update will also
take an average time of O(1).

Lastly, a query for the most important node that has not been loaded must be
performed. We avoid a O(N) search® for every query by caching the unique ID of the
last node that is queried. We update the cache if an insert, delete or update causes:

¢ a node below the cached node to go above the cached node in the priority queue, or
e the cached node to move below an unloaded node in the priority queue,

This amortizes the O(N) cost for searching to O(1).

Consequently, our implementation of the priority queue provides better query,
insertion, delete, and update times of nodes for the average cases compared to a heap
data structure. It also scales well with the number of nodes in the hierarchy.

5A search with a heap would also take O(N) time.

23



Chapter 5

Discussion and Comparison

The nodes selected to render must provide maximum benefit but be within a specified
cumulative cost. This cost is measured as the estimated render time for each frame. The
optimal selection of such nodes is a known NP-complete problem [19]. Therefore, the
solution is approximated by using greedy heuristics [10, 18, 26].

In the following sections, we compare our heuristics with the Adaptive Display
algorithm of Funkhouser and Séquin [16-18]. We also cover the strengths and
weaknesses of both approaches.

5.1 Adaptive Display Algorithm

Funkhouser and Séquin utilize a simple hierarchy where each node has exactly one
child or no children. Each node is assigned a “value” that is the ratio of the benefit
and cost [18]. The selection of LODs to render is based on picking those nodes with the
largest value that do not cause total estimated render time to exceed the target render
time.

An analogous way to visualize this algorithm is illustrated in Fig. 5.1 where each
representation of all the objects that are not culled away is plotted in two dimensions
based on its benefit and cost. The LODs that represent the same object are linked with
a line.

The selection process starts with a vertical line through the origin. This line is rotated
clockwise and any node that goes through the line is selected as long as the total cost
does not exceed the target render time. If a node is selected, other nodes connected to it
are not considered for selection. The line continues to be swept until there are no more
objects left to be selected.

This algorithm exhibits certain characteristics:
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Figure 5.1: The Adaptive Dis-
- play algorithm selects nodes
Object 3

LODO by sweeping a selection line
clockwise. The render time
is shown on the right with
selected nodes in grey.

Cost

Under-utilization of render time: Less detailed objects can be selected because they
usually have very low cost. As shown in Fig. 5.2 (a), these nodes will be selected
and some of the more detailed objects will not be selected in spite of having render
time available for them.

The Adaptive Display algorithm compensates for this with an incremental algorithm
that updates the previous selection by iteratively replacing high value nodes with
a node of higher accuracy [18]. Similarly, nodes of low value are replaced with a
node of lower accuracy. The replacements continue until the same representation
is upgraded and downgraded in the same iteration.

Over-utilization of render time: If the render time is small, or if very few nodes can
be culled away, or some nodes use up a large portion of the render time, then the
actual render time will exceed the target render time.

The Adaptive Display algorithm resolves this by skipping objects that, when
rendered, would exceed the target render time [18]. This is illustrated in Fig. 5.2 (b).
We prefer reduction in detail of some objects over skipping objects entirely.

Flickering from changing benefit: As the user moves around, some objects become
more beneficial as they approach the camera. Other objects become less beneficial.
One can usually find certain positions where a small movement will cause flickering
of the LODs.

The Adaptive Display algorithm incorporates a hysteresis value into the benefit
heuristic for each object. This value is proportional to the difference in the level
of detail of a node from the one selected in the previous frame [18]. This scheme
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offers spatial hysteresis. That is, a node will toggle only when the user moves to
compensate for the toggle penalty.

Flickering from changes in visibility: Again, one can find certain viewpoints where
a slight movement or rotation can cause a substantial change in the number of
objects in the view frustum. This affects how the render time is distributed and
introduces flickering.

The Adaptive Display algorithm tries to use as much of the render time without
exceeding it. This implies that the change in visibility of even a single object can
cause flickering [16]. The Adaptive Display algorithm does not offer a solution to
minimize this flickering.

Running Time Complexity: The Adaptive Display algorithm must sort each represen-
tation of all the visible objects by “value.” This takes O(N log(N)) time where N is
the total number of representations. Subsequently, it takes O(/NV) time to traverse
the entire sorted list to select representations.

The incremental algorithm improves the running time by using the previous
selection as a starting solution. In this case, the algorithm must update the “value”
of each representation in O(N) time. The nearly sorted list, on average, is resorted
in O(N) time or O(Nlog(N)) in the worst case. The number of replacement iterations
are usually a few in number so the total running time is O(N) on average and
O(N log(N)) in the worst case.

5.2 Proposed Algorithm

The rendering thread selects a front! in the node hierarchy by distributing the
render time in proportion to the importance of a node compared to its siblings. The
normalized difference between the time slice and estimated render time is used to
update a hysteresis counter. Those nodes are selected to be rendered whose cumulative
hysteresis counter is non-negative and closest to zero.

Object 1

SAeetion Curve Figure 5.3: Our algorithm se-

lects nodes by tracing a curve
across the hierarchy. Nodes

\ [ [] (o} o] [ [ ] [ |-{i] [ |-{ri] [mo} [riz] ~ SC16Ct€ are shownin grey.
SN —

!A front is the set of nodes such that all traversals from the root to a leaf node go through exactly one
front node.
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Note that the truncated hysteresis counter for each node is any arbitrary integer. It is
likely to be positive near the root and negative towards the leaves. Perhaps, somewhere
between the path from the root to a leaf, one of the node’s hysteresis counter will be zero.
If not, we interpolate the positive and negative values to find the zero crossing between
a parent and its children.

We define the selection curve such that it crosses the entire hierarchy where the
truncated hysteresis counter is zero. One such curve is illustrated in Fig. 5.3. Nodes
are selected such that the sum of the signed distances between the curve and a set
of siblings is non-negative. This is equivalent to summing up the truncated hysteresis
counter and selecting the bottom-most set for which the sum is greater than or equal to

Z€ro.

Subsequent selection curves are drawn by moving the previous frame’s selection
curve up and down along each node. The amount of movement depends on how quickly
the node changes in importance.

Our algorithm exhibits certain characteristics:

Under-utilization of render time: Although the curve can be drawn arbitrarily, dis-
crete nodes must be chosen for rendering. Also, one node cannot be chosen unless
the siblings are selected as well. Lastly, if a node is not loaded in memory, the
parent must be selected instead. These three issues lead to some wastage of the
render time. An example is shown in Fig. 5.4 (a).

We compensate for this with the feedback loop mentioned in Section 4.2. This
adjusts the target render time passed to the root of the HLOD hierarchy if the
actual render time is used inefficiently and loaded nodes were rejected.

Over-utilization of render time: The curve can be drawn such that hlod, nodes would
be skipped. Since we do not skip hlody nodes, this can exceed the target render
time. This is demonstrated in Fig. 5.4 (b). We can also over-utilize the render time
if the data sent to the graphics pipeline exceeds the graphics card memory.

The feedback loop discussed in Section 4.2 also decreases the target render time
given to hlody nodes if the actual render time is much larger than the target.

Flickering from changing benefit: Since we move the selection curve up and down
from the previous location, our algorithm is not subject to immediate flickering
over slight movements back and forth. Furthermore, the amount of time between
each switch can be controlled by the hysteresis parameter, cyystswitch-

Recall that the Adaptive Display Algorithm’s hysteresis is spatial in nature and
large movements can compensate for the benefit penalty imposed by hysteresis.
Our hysteresis implementation is temporal since our hysteresis counters retain
memory over time. The amount of memory is determined by cj,ys;Limit-
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Figure 5.4: (a) Render time is

under-utilized because one of

objects 1's hlod: is not avail-
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ject 2’s first hlod:, but not

enough to render all siblings;

Object 1 Selection Curve Object 2 (b) When the target render

time is reduced, the selection
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quently, we over-utilize ren-

der time by not skipping Ob-
ject 1 and 2.

‘ hlod2 H hlod2 ‘ ‘ hlod2 H hlod2 ‘ ‘ hlod2 H hlod2 ‘ ‘ hlod2 H hlod2 ‘ ‘ hlod2 H hlod2 ‘ ‘ hlod2 H hlod2

(b)

Flickering from changes in visibility: Our hysteresis solution limits immediate
switching when the number of objects in the view frustum change. The delay in
switching depends on the number of objects that are added or removed by culling.
The delay may also be influenced by the hysteresis parameters.

Flickering from unavailability of culled nodes: When a node is not visible and not
available in memory, one can render the sibling nodes anyway. However, if the user
moves in such a manner that the unavailable node becomes visible, the siblings
cannot be rendered and the parent must be selected. If the user moves back to
the original position, the sibling nodes will be displayed in more detail again. This
flickering? can be bothersome for the user.

We have implemented an option for the user to require that a switch from parent
to children only be made if all children are available in memory. Although higher
detailed HLODs take longer to toggle, they switch to less detail only if one of the
nodes gets unloaded?® or if the hysteresis value decreases substantially.

Running Time Complexity: Our rendering selection need not visit each node in the
HLOD hierarchy. Note that when the cumHyst counter is below zero for any set of
siblings, we select the parent and do not visit any of their children. Recall from

>The Adaptive Display algorithm does not have sibling nodes and is not subject to this.
3Nodes usually get unloaded only if the priority decreases substantially because the user moved far away.
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Fig. 4.2 that cumHyst depends on the time slice and the render time. Let us look at
both of these below:

e The time slice is dependent on the relative cost and benefit compared to other
siblings and the target render time. However, if one node’s benefit and cost
changes, other nodes will roughly relinquish some time slices or use up any
extra time slices. That is, the selection curve will change but the number
of nodes visited will approximately be the same. Therefore, the complexity
to render one frame depends on the number of triangles that can consume
CtargetTime-

e The time needed to render all nodes must approximately sum up to the target
render time. Again, the constant, cirgeiTime. determines the running time
complexity to render a frame.

For any given selection curve, we not only visit the nodes near it but also above it.

v
Clevel Factor

geometric series that is in O(ciargetTime)-

If we visit v nodes, then we also visit | | parents and so on. This defines a

One last observation is that we must visit all the hlody, nodes and render at least
that. The number of hlody nodes corresponds to the number of objects in the scene
and is independent of the number of nodes in the HLOD hierarchy. Therefore, the
total running time to render a frame is O(ciargetTime + numObjects).

5.3 Summary

One major difference between the Adaptive Display algorithm and our algorithm is
that we generalized our algorithm to work with HLODs rather than LODs. Secondly,
we do not skip any objects. Instead, we remove detail from the high priority nodes to
maintain a consistent frame rate.

Also, our implementation of hysteresis does not guarantee an absolute frame rate.
Instead, we put more emphasis on decreasing flickering of nodes at the expense
of sometimes slightly going over the alloted frame render time. We argue that a
slight change in frame render time is less noticeable than drastic flickering of nodes.
Furthermore, the trade off between frame rate consistency and flickering can be
controlled by the hysteresis parameters.
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Chapter 6

Results and Remarks

We have implemented our rendering engine on a Windows architecture using the
Visual C++ language. Our tests are run on a Windows XP PC with a 2.0 GHz Intel
Pentium IV CPU, 1024 MB of system RAM, and a Nvidia GeForce4 Ti 4600 graphics card
with 128 MB of RAM.

Our implementation allows the user to move around in all 6 degrees of freedom
without any restrictions. The user has the choice of standing still or navigating at

arbitrary speeds!.

Parameter | Description Assignment Value
CdesiredTris | Desired number of triangles for each | Guessed, based on 900
HLOD node model size
ClevelFactor | Simplification factor between two | Guessed, 2 yielded too 4
successive levels of the hierarchy many HLOD levels
Cteztured Weight of number of textured trian- | Measured render time 0.127
gles to estimate render time of textured and untex-
tured triangles
Cuis Importance of visibility for the prior- | Guessed 1.275
ity heuristics
Cfore Importance of foreshortening for the | Guessed 0.450
priority heuristics
CtargetTime | Target render time for each frame User preference 30 ms
Chystswiteh | Hysteresis threshold for switching a | User preference 1500
node
ChystLimit Range of values for the hysteresis | User preference 4510
counter
Cmemory Proportionality constant between | Measured by monitor- | 935 bytes
cost and memory usage ing memory usage

In the following sections, we discuss some of the tests we ran, the results we acquired

Table 6.1: List of parameters used in our implementation.

'In practice, we are limited by the precision of the floating point operations.
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from these tests, and the conclusions we made based on the results. For all the tests, we
set our parameters as shown in Table 6.1. The values for these parameters were chosen
based on:

e user preference,
e experimental measurements, or
e some guesswork along with trial and error.

6.1 Memory Management Ability

We would like to demonstrate that our memory management algorithm, described
in Section 4.3, prevents memory usage from exceeding a specified threshold. To do so,
we conduct a test where we run our rendering engine under standard conditions and
monitor the memory utilization five times every second.
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Figure 6.1: This graph shows the memory utilization for the first 400 seconds.

Observe in Fig. 6.1 that the rendering engine consumes 16 percent of memory
immediately after launch. After that, the loading thread asynchronously loads and
unloads nodes as dictated by the priority queue. Peak memory utilization of about
93 percent is reached at the 95th second. Memory usage, for the remainder of the
experiment, remains relatively flat.

6.2 Detail Management Effectiveness

To show that our rendering engine adapts to varying rendering loads by varying the
amount of detail in the scene, we did two tests. In both tests, we examine each rendered
node’s position in the hierarchy to determine the amount of detail that was rendered.
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Figure 6.2: (a) Fly-through mode renders only hlods and hlod: nodes; (b) Least detailed hlody nodes constitute
80 to 90 percent of total nodes rendered
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Figure 6.3: (a) Walk-through at ground level renders fewer total HLODs; (b) A larger percentage of more
detailed HLODs are selected to be rendered

In the first test, we render the scene in a fly-through mode such that the entire model
is visible. Figs. 6.2 (a) and (b) show that very few highly detailed HLODs were selected to
be rendered. That is, only a small percentage of nodes are shown in high detail.

The second test was done at ground level where many nodes could be culled away.
Figs. 6.3 (a) and (b) show that many highly detailed HLODs were rendered. Also, hlody
nodes were only 20 to 45 percent of total nodes that were rendered.
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This confirms that our rendering engine effectively manages detail based on the
complexity of the scene that is to be rendered.

6.3 Accuracy of Estimated Render Time

Our rendering algorithm maintains a consistent frame rate with the use of time slices.
These time slices are compared with estimated render times. Consequently, our ability
to estimate the render time is crucial to making any frame rate guarantees.
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Figure 6.4: (a) Percentage difference between the estimated render time and the actual render time without
a feedback loop; (b) Percentage difference where the estimated render time is updated with a feedback loop;
(c) The feedback loop variable, viime, is shown; (d) Moving average of 35 frames contrasts the difference with
and without the feedback loop.
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We conduct a walk through and measure the actual time to render each frame. We
also estimate the render time of each frame with and without a feedback loop. Fig. 6.4 (a)
shows the difference in percentage between the render time estimated directly from the
total cost and the actual render time. The average difference is 4.39% and the standard
deviation is 15.19%.

When we incorporate a feedback loop into the estimated render time, the average
difference improves to —2.01%?2. The standard deviation shows the most notable
improvement by dropping to only 3.89%. In Fig. 6.4 (b), we see the percentage difference
when the estimated render time is augmented with a feedback loop.

Since the render times are subject to some noise, we compare a 35-frame moving
average of the percentage difference for both types of estimates in Fig. 6.4 (d). Note that
the feedback loop ensures a more accurate estimate of render time and justifies its need.

6.4 Frame Rate Consistency

We measure the actual render time for the two tests that we conducted in Section 6.2.
These are shown in Figs. 6.5 (a) and (b) for walk-through and fly-through respectively.
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Figure 6.5: Actual render time compared to target render time of 30 milliseconds for (a) walk-through and
(b) fly-through.

As can be seen from these figures, the walk-through mode culls away a lot of the hlod
nodes and, thus, the time utilization depends on the loading of more detailed HLODs.
The fly-through render times are much closer to the target render time since a large

2A negative percentage difference implies a conservative time estimate.
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majority of nodes that are selected to be rendered are hlody nodes that are resident in

memory.

Note that occasionally, the actual render time slightly exceeds the target render time.
These are largely due to the noise in render times mentioned in the above Section. Some
occasions may also be attributed to the hysteresis implementation allowing more time to
be consumed to render a frame. On the whole, our algorithm utilizes the alloted render
time well and prevents the actual render time from exceeding the target render time by

excessive amounts.

6.5 Flicker Prevention

In order to measure the flickering, we count each time a nodes gets upgraded to its
children® between successive frames. Similarly, we tally each downgrade from sibling
nodes to a parent node. We do not count nodes that are culled away between frames.
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Figure 6.6: Flickering measured during (a) walk-through, and (b) drive-through. The moving average is
taken over 35 frames.

First, we performed a walk-through test. We show 400 frames from this walk-through
in Fig. 6.6 (a)*. We performed 3 toggles in total. This averages to 0.008 toggles per frame
or 1 toggle for every 133 frames.

The second test was conducted at approximately 10 times the velocity of the walk-
through. The toggles and the moving average are shown in Fig. 6.6 (b). Note that in

3This is counted as one node toggle, regardless of the number of children.
“A down toggle is shown in the negative axis for clarity only.
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drive-through mode, the toggles are more frequent since the user is moving around the
scene more rapidly. Consequently, we see one toggle every 11 frames on average.

Overall, the two tests show that we do not get successive up and down toggles
associated with oscillations from the feedback loops. Therefore, the overall flicker is
minimized and user experience with our rendering engine is positive.

6.6 Future Work

Our cost heuristics do not take into account the texture size because we have
established that increasing the amount of texture does not increase the render time.
The exception to this occurs when the texture size exceeds the texture memory on
the graphics card. In this case, the render times change substantially. Although our
feedback loop reduces allocated render time to compensate for this situation, it would
be interesting to directly address this.

Another improvement would to be to accumulate unused time slices and give it to
other nodes that could make use of it. The challenge is to do this without introducing
flickering. Our current approach indirectly solves this with the feedback loop for the
allocated render time.

The cost heuristics can also be improved to better model fill rate and other intrinsic
properties of a graphics card. Lastly, the foreshortening in the benefit heuristics could
be improved by clustering similarly oriented triangles together in one node.

6.7 Conclusion

We have presented an algorithm that uses hierarchical levels of detail to efficiently
render large, detailed models for walk-through and fly-through modes of interaction.
Our implementation runs on a common PC with a moderate graphics card and system
memory.

Our rendering engine limits memory usage, maintains a specified frame rate by man-
aging detail, and incorporates hysteresis into a simple unified approach. Furthermore,
our pre-fetching scheme does not skip objects that are visible or delay rendering to load
objects.

Lastly, our implementation scales well with increasing data size and degenerates
gracefully to the case where it does not render any of the more detailed HLODs.
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